It takes two to tango. Dichotomous principles in regional economic models

Nino Javakhishvili-Larsen and Bjarne Madsen

Content

- 1. Aim of this paper and "why should you care"?
- 2. Regional economic models how to tango in Denmark
- 3. Theoretical understanding of the 2 by 2 by 2 principle
- 4. Discussion regarding the size and types of multipliers
- 5. Setup of hypothesis and experiment

Aim and scope

- Aim of this paper: To analyse the size and types of multipliers based on the multiplier experiment in Leontief's input-output and Miyazawas extended demographic model.
- "Why should you care"? This study should contribute to analyse how local economies function and its linkages to other areas of economy and geography.
 - E.G. if we argue that the export jobs are attractive for local communities then our question should be
 - How attractive are they?
 - What are the spillover and feed-back effects on other localities?
 - How much the local economic structure and its geography actually matters?

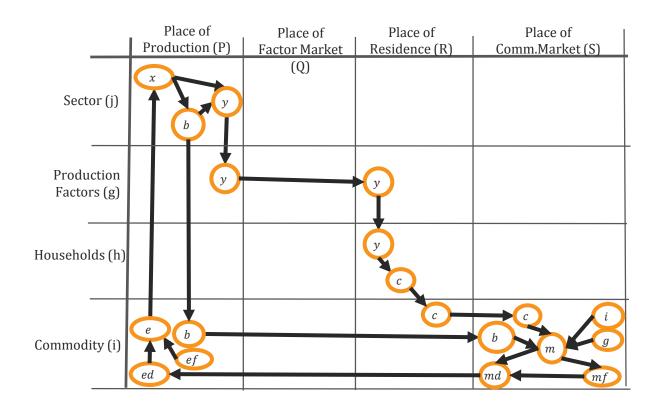
Regional economic models How to tango in Denmark?

• 2 by 2 by 2 principle is the basic data and model-structure in SAM-K and LINE (interregional general equilibrium model)

History:

- 1995 to 2010 developed model and theory based upon the 2 by 2 by 2-principle (B. Madsen, C. Jensen-Butler, P. Dam)
- 2006 to 2018 SAM-K and LINE was implemented in practice (B. Madsen, J. Zhang)
- <2018 different versions of SAM-K/LINE:
 - Basis version (5 regions, The Danish Agency for Labour Market and Recruitment)
 - Tourism version (Visit Denmark)
 - Harbour version (Danish Harbours)
 - Building version (The Danish Construction Association)

2018 <


- Health Economic version...under development (Region Greater Copenhagen)
- Environmental Economic version ...under development (CRT, Aarhus University and Copenhagen University)

It takes two to tango

From the National Quantity model to the Inter-Regional 2 by 2 by 2-model

Figure 3.2.c The circular flow
With income/expenditure flows
With detailed social accounting and geography

SAM-K/LINE based on 2 by 2 by 2-principles:

SAM-K refers to Social Accounting Matrix for K-municipalities LINE refers to Interregional General Equilibrium Model

2x2x2 - Geography:

- ✓ Place of production
- ✓ (Place of factor market)
- ✓ Place of residence
- ✓ Place of commodity market

• 2x2x2 - Actors:

- ✓ Sectors
- ✓ Production factors
- √ (Household types)
- ✓ Commodities

• 2x2x2 - Interactions:

- ✓ Trade
- ✓ Commuting
- Shopping
- ✓ Tourism

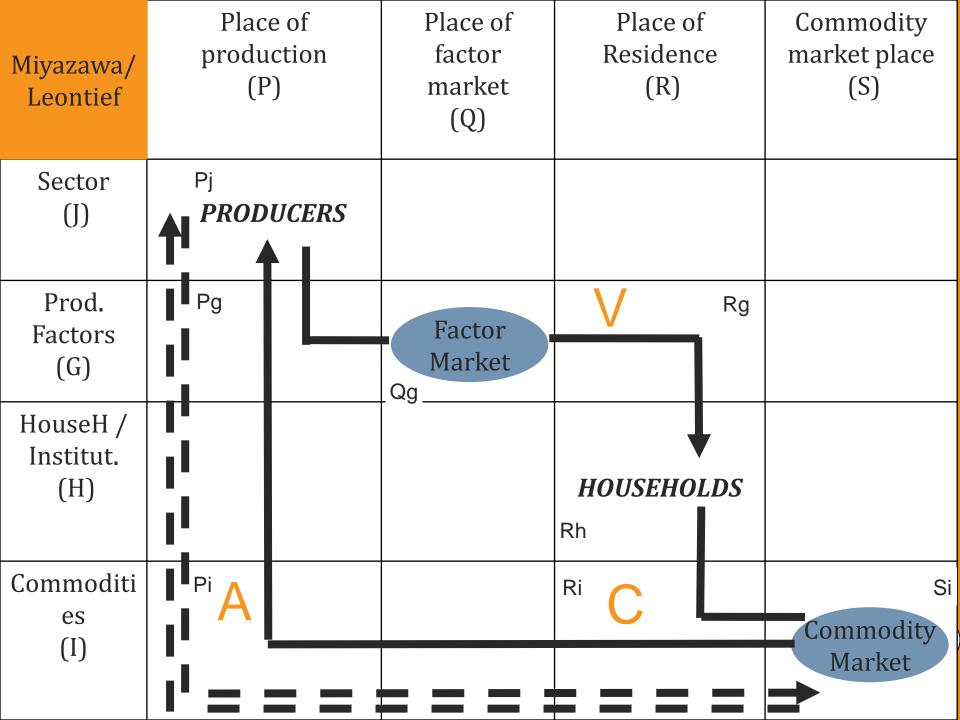
2 by 2 by 2-principle	Place of production (P)			Place of factor market (Q)	Place of Residence (R)		Commodity market place (S)
Sector (j)	PRODUCERS Pj						
Prod. Factors (g)		Pg		Qg Factor Market	Rg		
HouseH / Institut. (h)					Bh HOUSEHO	LDS	
Commoditi es (i)		Pi			Bi		Si Commodity Market

The Leontief - Miyazawa interregional Input-output & Income Multiplier Model

First, in the Miyazawa extended demographic model the production is determined in the following way:

where

x: gross output by sector


A: intermediate consumption by sector of origin as share of gross output, by purchasing sector

C: Private consumption by sector and place of production as share of private consumption, by type of household and by place of residence

f: final demand, by sector

The simple solution to the model is:

From the "A- and CV-model" to the "2 x 2 x 2"principle-model

The Leontief and Miyazawa model can be decomposed into the following expression:

From this the solution to the model can be established:

The Leontief – Miyazawa interregional Input-output & Income Multiplier Model Decomposition in to 2x2 elements (C)

Further the consumption matrix \boldsymbol{C} can also be divided into four sub-matrices:

 $B_{cp} = b_{h,i}^R$: Private consumption by commodity i as share of income, by type of household by place of residence R (USE-table)

 $S_{cp} = s_i^{R,S}$: Private consumption by place of commodity market S as share of total private income, by place of residence R and by commodity i

 $T = t_i^{S,P}$: Trade by place of production P share of total trade, by place of commodity market S and by commodity i

 $D = x_{i,j}^P$: Production by sector j as share of total production, by place of production P and by commodity i (MAKE/SUPPLY-table)

The Leontief – Miyazawa interregional Input-output & Income Multiplier Model Decomposition in to 2x2 elements (V)

Following the figure the *V*-matrix can be divided into 4 sub-matrices:

 $G = j_{j,g}^P$: Factor income/labour demand by type of labour g as share of gross output, by sector j and by place of production P

 $J_{dem} = j_g^{P,Q}$: Income/labour demand by place of factor market Q as share of total employment demand, by place of production P and by type of labour g

 $J_{sup} = j_g^{Q,R}$ Income/labour demand by place of residence R as share of total employment demand, by place of factor market Q and by type of labour g

 $H = h_{g,h}^R$ Income/labour demand by place of factor market q as share of total employment demand, by place of residence R and by type of labour g

The Leontief – Miyazawa interregional Input-output & Income Multiplier Model Decomposition in to 2x2 elements (A)

The Leontief interaction between sectors *A* can be sub-divided into 4 components:

 $B_{ic} = b_{IC,j,i}^P$: Intermediate consumption by place of production P as share of production, by place of production P, by sector j and by commodity i (USE-table)

 $S_{ic} = s_{IC,i}^{P,S}$: Intermediate consumption by place of commodity market S as share of intermediate consumption, by place of production P and by commodity i

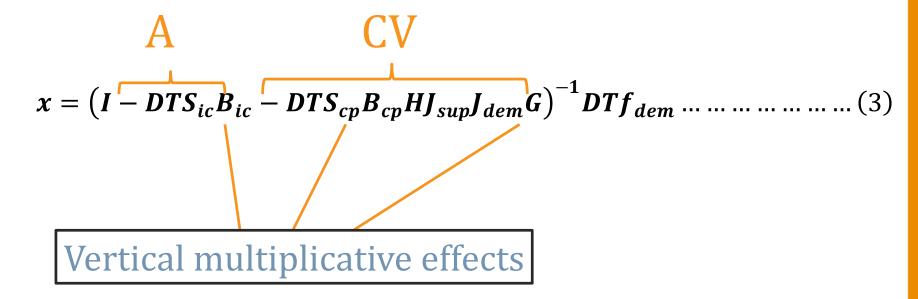
 $T = t_i^{S,P}$: see definition of trade above

 $D = x_{i,j}^P$: see definition of supply reverse matrix above

The size and types of multipliers

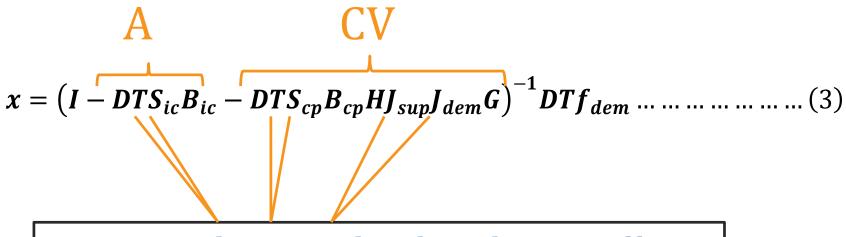
Vertical (SAM-elements, multiplicative)

- Intermediate consumption shares
- Private consumption shares
- GVA-shares


Horizontal (redistribution, non-multiplicative)

- Commuting
- Shopping
- Trade

From the "A- and CV-model" to the "2 x 2 x 2"- principle -model


From this the solution to the model can be established:

From the "A- and CV-model" to the "2 x 2 x 2"-principle-model

From this the solution to the model can be established:

Horizontal regional redistributive effects

The size of multipliers – hypothesis 1 (Horizontal : regional redistribution)

The size of multipliers can now be explained by the characteristics of 98 municipalities of Denmark:

- The **size** of municipality (Copenhagen, Aarhus ect.):
 - Lower the leakages the larger the municipality = high local multiplier
- The peripherality (islands):
 - both lower leakages commuting and shopping, but higher leakages interreg. trade = multipliers above average for the induced effects, but smaller for indirect effects
- **Suburban** areas of great cities (metropoles)
 - High commuting, shopping and trade, i.e. higher leakages = small local multiplier

The size of multipliers – hypothesis 2

(Vertical - SAM multiplicative effects)

The size of multipliers can now be explained by the characteristics of 98 municipalities:

- Municipalities with high share of sectors with higher intermediate consumption, e.g. Manufacturing industry
 - = high multiplier and impacts of changes in the final demand
- Big municipalities with ability to supply local markets with a goods and labour
 - > = higher local multiplier
- Municipalities with high private consumption shares
 - > = higher impacts of changes in the final demand

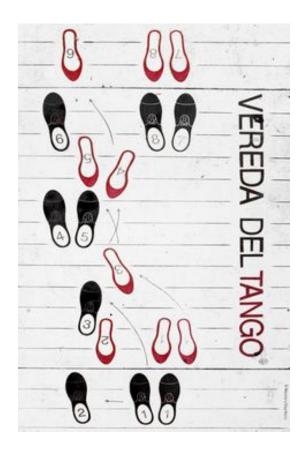
Types of multipliers

- Both Horizontal and Vertical multipliers can be sub-divided by:
 - ➤ Local multipliers i.e. intra-municipality impact
 - ➤ Higher is the intra-municipality leakages higher is local multiplier and lower is national multiplier
 - ➤ National multipliers i.e. inter-municipality impact
 - ➤ Higher is the inter-municipality leakages higher is the national multiplier and lower is the local multiplier

Multiplier experiments with LINE

(=Local INterregional Economic model for Denmark)

- Type of experiment:
 - 100 jobs within manufacturing industry
- Direct effects
 - Employment (Place of residence (R) by age, gender and education (g))
 - local demand (Place of commodity market (S) by commodity (i))
 - Jobs (place of production (P) by sectors (j))
- Multipliers
 - Local multipliers = direct local impacts/total local impact
 - National multipliers=direct national impacts/total national impacts



Future plan.....to complete the experiment and elaborate the results

To summarise:

- A-CV model based on Leontief and Miyazawa
- Distinction between the vertical and horizontal multipliers
- Discussion /hypothesis regarding size of multipliers
- The types of multipliers based on the spillover effects i.e. local and national
- We plan experiment by increasing 100 industry jobs in each municipality of Denmark to see the differences in size and types of multipliers vs. municipality characteristics

Thank you for your attention

