Seasonality and pricing – The case of Danish holiday cottages

Carl H. Marcussen Centre for Regional and Tourism Research, Bornholm, Denmark www.crt.dk

20th Nordic Symposium in Tourism and Hospitality Research, Rovaniemi, Finland, 21-24 September, 2011.

Overview

- 1. Introduction
- 2. Literature / causes / model of seasonality
- 3. Seasonality and holiday cottages rentals in Denmark
- 4. Seasonality and pricing of holiday cottage weeks
- 5. Summary / Discussion

Purpose

The purpose of the paper is to model seasonality in the demand for Danish cottage rentals, and to apply the model for pricing.

Causes of seasonality (~Bar-On, 1975)

Natural:

- Temperature (normal rather than actual)
- Hours of sunshine (rather than hours of daylight)
- Latitude and altitude
- Climate, rain/snow fall
- Snow depth

Institutional:

- School holidays (moving, in some key markets)
- Religious holidays (moving, in the spring)
- Calendar effects (number of days per month)
- Business seasons

Generic and diamond model of revenues:

Sum of revenues per time unit = sum of (price * quantity)

Source: Carl H. Marcussen, Sept. 2011

Percent of bednights and percent of rental weeks per month 2008-2010

Persons per holiday cottage per month

Rentals of holiday cottages per week in Denmark, 2008-2010

Normal* temperatures per week in Denmark

* Average historic highest daily temperatures.

Natural causes of seasonality: 77% Institutional causes: 23%

Moving holidays, spring. DK

Easter:

- 1. (Wednesday before) Maundy Thursday
- 2. (Maundy Thursday before) Good Friday
- 3. (Easter Sunday before) Easter Monday
- 4. (Thursday before) **Prayer Day** (Friday) *
- 5. (Wednesday before) Ascension Day (Thursday)
- 6. (Whit Sunday before) second Whit (Monday)

* Prayer Day is an official Danish public holiday that falls on the fourth Friday after Easter, and thus three weeks before Pentecost (a.k.a. Whit)

Moving summer holidays, Germany: e.g., Niedersachen

Week\year	2008	2009	2010	2011	2012	Total
25	0	0	4	0	0	4
26	0	4	7	0	0	11
27	0	7	7	4	0	18
28	4	7	7	7	0	25
29	7	7	7	7	0	28
30	7	7	7	7	7	35
31	7	7	3	7	7	31
32	7	3	0	7	7	24
33	7	0	0	3	7	17
34	3	0	0	0	7	10
35	0	0	0	0	5	5
Total	42	42	42	42	40	208

Explanatory variables for percentage of rental per week

(Constant)	Week_30	Week_37
	Week_41	Week_28
1 Temp norm	Week_36	Week_27
2 Sum Niedersach	Week_35	Week_34
2. $Juni_Neuersaun$	Week_32	Easter_2nd
3. Week_42	Week_31	Palmesondag
4. Easter_3_days	Week_29	Week_1
5. New_Years_eve	Week_33	Week_43
	_	Week 52

R2 adjusted=0.956

The model – R2 adjusted=0.956

	Unstandardized Coefficients		Standardized Coefficients		Collinearity		Statistics
Model	В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1 (Constant)	.270	.047		5.804	.000		
Temp_norm	.147	.006	.587	24.209	.000	.478	2.091
Sum_Niedersach	.104	.023	.151	4.601	.000	.260	3.848
Week_27	.993	.209	.093	4.744	.000	.731	1.369
Week_28	1.219	.224	.114	5.433	.000	.636	1.571
Week_29	1.845	.237	.173	7.771	.000	.568	1.761
Week_30	2.164	.238	.203	9.110	.000	.568	1.762
Week_31	1.741	.221	.163	7.888	.000	.657	1.522
Week_32	1.454	.199	.136	7.308	.000	.809	1.236
Week_33	1.144	.193	.107	5.928	.000	.860	1.162
Week_34	.865	.189	.081	4.579	.000	.897	1.115
Week_35	1.029	.188	.096	5.470	.000	.906	1.104
Week_36	1.016	.187	.095	5.443	.000	.919	1.088
Week_37	.854	.185	.080	4.604	.000	.931	1.074
Week_41	.966	.182	.091	5.313	.000	.969	1.032
Week_42	1.802	.181	.169	9.949	.000	.977	1.024
Week_43	.404	.181	.038	2.236	.027	.982	1.018
Week_52	.542	.186	.051	2.915	.004	.928	1.078
New_Years_eve	.556	.147	.067	3.790	.000	.903	1.107
Palmesondag	.657	.181	.062	3.633	.000	.980	1.021
Easter_3_days	1.314	.180	.123	7.285	.000	.984	1.016
Easter_2nd	.665	.180	.062	3.693	.000	.987	1.013

Coefficients^a

a. Dependent Variable: Pct_of_rentals

Y=Pct of rentals

Application of the model for future price decision support. R2 adj.=0.929

		Unstandardized Coefficients		Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	71.951	.848		84.873	.000		
	Temp_norm	2.445	.099	.516	24.687	.000	.625	1.599
	New_Years_eve	65.242	3.394	.327	19.225	.000	.942	1.061
	Week_27	31.079	3.409	.156	9.117	.000	.934	1.071
	Week_28	41.181	3.414	.207	12.062	.000	.931	1.074
	Week_29	52.470	3.419	.263	15.346	.000	.928	1.077
	Week_30	52.176	3.422	.262	15.246	.000	.927	1.079
	Week_31	51.932	3.425	.260	15.163	.000	.925	1.081
	Week_32	49.163	3.425	.247	14.352	.000	.925	1.081
	Week_33	35.210	3.421	.177	10.292	.000	.927	1.079
	Week_34	22.425	3.416	.112	6.564	.000	.930	1.075
	Week_52	18.674	3.388	.094	5.512	.000	.945	1.058
	Palmesondag	12.430	3.320	.062	3.744	.000	.985	1.016
	Easter_3_days	15.074	3.313	.076	4.550	.000	.989	1.011
	Easter_2nd	12.824	3.307	.064	3.878	.000	.992	1.008

Coefficients^a

a. Dependent Variable: Price_level Y=Price_level

Note: Excludes week 53.

Eliminated in a stepwise multiple regression analysis: Week_35, Week_36, Week_37, Week_41, Week_42, Week_43 Both seasonality in quantities demanded and in prices contribute to seasonality in revenue. Recommended prices can be predicted. Probably, the same could be done for other tourism services.

Planned price-level for 2012

Predicted = suggested price level 2012

Deviations (un.std.) between published planned price-level versus predicted price - 2012

Conclusions / Summary

- It is possible to predict the future distribution of cottage renting weeks, and other lodging services, with known normal temperatures, calendar and moving holidays.
- Application of a model as a decision support tool for pricing: 1. Explain seasonal demand. 2. Explain price.
 3. Predict (recommend) price, given calendar etc.. 4. ...
- Temperature is a key driver for demand in leisure tourism.
- Consider taking the holiday periods, and any known changed in these of main markets, into account when setting seasonal prices or predicting seasonal demand.